A Discrete Event Simulation with Optimization in the Loop Approach to Solving a Scheduling Problem

نویسندگان

  • L. F. Perrone
  • F. P. Wieland
  • J. Liu
  • B. G. Lawson
  • D. M. Nicol
  • R. M. Fujimoto
  • Darryl K. Ahner
  • Arnold H. Buss
  • John Ruck
چکیده

Many military planning problems are difficult to solve using pure mathematical programming techniques. One such problem is scheduling unmanned aerial vehicles (UAVs) in military operations subject to dynamic movement and control constraints. This problem is instead formulated as a dynamic programming problem whose approximate solution is obtained via the Assignment Scheduling Capability for UAVs (ASC-U) model using concepts from both simulation and optimization. Optimization is very effective at identifying the best decision for static problems, but is weaker in identifying the best decision in dynamic systems. Simulation is very effective in modeling and capturing dynamic effects, but is weak in optimizing from alternatives. ASC-U exploits the relative strengths of both methodologies by periodically re-optimizing UAV assignments and then having the simulation transition the states according to state dynamics. ASC-U thus exploits the strengths of simulation and optimization to construct good, timely solutions that neither optimization nor simulation could achieve alone.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A discrete-event optimization framework for mixed-speed train timetabling problem

Railway scheduling is a complex task of rail operators that involves the generation of a conflict-free train timetable. This paper presents a discrete-event simulation-based optimization approach for solving the train timetabling problem to minimize total weighted unplanned stop time in a hybrid single and double track railway networks. The designed simulation model is used as a platform for ge...

متن کامل

Optimal design of supply chain network under uncertainty environment using hybrid analytical and simulation modeling approach

Models that aim to optimize the design of supply chain networks have gained more interest in the supply chain literature. Mixed-integer linear programming and discrete-event simulation are widely used for such an optimization problem. We present a hybrid approach to support decisions for supply chain network design using a combination of analytical and discrete-event simulation models. The prop...

متن کامل

An Optimization via Simulation approach for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problems

In this paper a novel modelling and solving method has been developed to address the so-called resource constrained project scheduling problem (RCPSP) where project tasks have multiple modes and also the preemption of activities are allowed. To solve this NP-hard problem, a new general optimization via simulation (OvS) approach has been developed which is the main contribution of the current re...

متن کامل

Cat swarm optimization for solving the open shop scheduling problem

This paper aims to prove the efficiency of an adapted computationally intelligence-based behavior of cats called the cat swarm optimization algorithm, that solves the open shop scheduling problem, classified as NP-hard which its importance appears in several industrial and manufacturing applications. The cat swarm optimization algorithm was applied to solve some benchmark instances from the lit...

متن کامل

Real-time Scheduling of a Flexible Manufacturing System using a Two-phase Machine Learning Algorithm

The static and analytic scheduling approach is very difficult to follow and is not always applicable in real-time. Most of the scheduling algorithms are designed to be established in offline environment. However, we are challenged with three characteristics in real cases: First, problem data of jobs are not known in advance. Second, most of the shop’s parameters tend to be stochastic. Third, th...

متن کامل

An Intelligent Algorithm for Optimization of Resource Allocation Problem by Considering Human Error in an Emergency Department

Human error is a significant and ever-growing problem in the healthcare sector. In this study, resource allocation problem is considered along with human errors to optimize utilization of resources in an emergency department. The algorithm is composed of simulation, artificial neural network (ANN), design of experiment (DOE) and fuzzy data envelopment analysis (FDEA). It is a multi-response opt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010